Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Lipid Res ; 65(3): 100517, 2024 03.
Article in English | MEDLINE | ID: mdl-38342436

ABSTRACT

The last step of ex novo ceramide biosynthesis consists of the conversion of dihydroceramide into ceramide catalyzed by sphingolipid Δ4-desaturase DEGS1. DEGS1 variants were found to be responsible for heterogeneous clinical pictures belonging to the family of hypomyelinating leukodystrophies. To investigate the mechanisms making such variants pathogenic, we designed a procedure for the efficient detection of desaturase activity in vitro using LC-MS/MS and prepared a suitable cell model knocking out DEGS1 in HEK-293T cells through CRISPR-Cas9 genome editing (KO-DES-HEK). Transfecting KO-DES-HEK cells with DEGS1 variants, we found that their transcripts were all overexpressed as much as the WT transcripts, while the levels of cognate protein were 40%-80% lower. In vitro desaturase activity was lost by many variants except L175Q and N255S, which maintain a catalytic efficiency close to 12% of the WT enzyme. Metabolic labeling of KO-DES-HEK with deuterated palmitate followed by LC-MS/MS analysis of the formed sphingolipids revealed that the ceramide/dihydroceramide and sphingomyelin/dihydrosphingomyelin ratios were low and could be reverted by the overexpression of WT DEGS1 as well as of L175Q and N255S variants, but not by the overexpression of all other variants. Similar analyses performed on fibroblasts from a patient heterozygous for the N255S variant showed very low variant DEGS1 levels and a low ratio between the same unsaturated and saturated sphingolipids formed upon metabolic labeling, notwithstanding the residual activity measured at high substrate and homogenate protein concentrations. We conclude that loss of function and reduced protein levels are both relevant in disease pathogenesis.


Subject(s)
Ceramides , Oxidoreductases , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Ceramides/metabolism , Sphingolipids/genetics , Sphingolipids/metabolism , Fatty Acid Desaturases/genetics
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982367

ABSTRACT

Lactosylceramide is necessary for the biosynthesis of almost all classes of glycosphingolipids and plays a relevant role in pathways involved in neuroinflammation. It is synthesized by the action of galactosyltransferases B4GALT5 and B4GALT6, which transfer galactose from UDP-galactose to glucosylceramide. Lactosylceramide synthase activity was classically determined in vitro by a method based on the incorporation of radiolabeled galactose followed by the chromatographic separation and quantitation of the product by liquid scintillation counting. Here, we used deuterated glucosylceramide as the acceptor substrate and quantitated the deuterated lactosylceramide product by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We compared this method with the classical radiochemical method and found that the reactions have similar requirements and provide comparable results in the presence of high synthase activity. Conversely, when the biological source lacked lactosylceramide synthase activity, as in the case of a crude homogenate of human dermal fibroblasts, the radiochemical method failed, while the other provided a reliable measurement. In addition to being very accurate and sensitive, the proposed use of deuterated glucosylceramide and LC-MS/MS for the detection of lactosylceramide synthase in vitro has the relevant advantage of avoiding the costs and discomforts of managing radiochemicals.


Subject(s)
Glucosylceramides , Lactosylceramides , Humans , Chromatography, Liquid , Galactose , Tandem Mass Spectrometry , Glycosphingolipids
3.
Glycobiology ; 33(2): 88-94, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36504340

ABSTRACT

Glucosylceramide synthase (UGCG) is a key enzyme in the biosynthesis of glycosphingolipids and its activity is related to the resistance to anticancer drugs and is involved in the derangement of metabolism in various diseases. Moreover, UGCG acts as a major controller of the balanced levels of individual brain sphingolipids that may trigger neurodegeneration in Gaucher disease and in Parkinson disease associated to pathogenic variants in the glucocerebrosidase-encoding gene GBA. We have developed an effective method for determining UGCG activity in vitro using deuterated ceramide as an acceptor, and quantitation of the formed deuterated glucosylceramide by liquid chromatography coupled with tandem mass spectrometry. The method enabled us to determine the kinetic parameters of UGGC and the effect of the inhibitor GZ667161 on the enzyme activity expressed in model cells, as well as to measure UGCG specific activity in human fibroblasts using a simple crude cell homogenate. This novel approach may be useful in determining the actual UGCG activity levels in patient cells and tissues of animal models of diseases, and to study novel drugs targeting glycosphingolipid metabolism.


Subject(s)
Brain , Glucosylceramides , Animals , Humans , Glucose , Glucosyltransferases/genetics , Uridine Diphosphate
4.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194747, 2021.
Article in English | MEDLINE | ID: mdl-34500083

ABSTRACT

BACKGROUND: The Sda antigen and corresponding biosynthetic enzyme B4GALNT2 are primarily expressed in normal colonic mucosa and are down-regulated to a variable degree in colon cancer tissues. Although their expression profile is well studied, little is known about the underlying regulatory mechanisms. METHODS: To clarify the molecular basis of Sda expression in the human gastrointestinal tract, we investigated the transcriptional regulation of the human B4GALNT2 gene. The proximal promoter region was delineated using luciferase assays and essential trans-acting factors were identified through transient overexpression and silencing of several transcription factors. RESULTS: A short cis-regulatory region restricted to the -72 to +12 area upstream of the B4GALNT2 short-type transcript variant contained the essential promoter activity that drives the expression of the human B4GALNT2 regardless of the cell type. We further showed that B4GALNT2 transcriptional activation mostly requires ETS1 and to a lesser extent SP1. CONCLUSIONS: Results presented herein are expected to provide clues to better understand B4GALNT2 regulatory mechanisms.


Subject(s)
N-Acetylgalactosaminyltransferases/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Colon , HT29 Cells , Humans , Intestinal Mucosa , N-Acetylgalactosaminyltransferases/metabolism , Oligosaccharides/biosynthesis , Promoter Regions, Genetic , Sp1 Transcription Factor/metabolism , Transcriptional Activation
5.
Adv Exp Med Biol ; 1325: 173-186, 2021.
Article in English | MEDLINE | ID: mdl-34495535

ABSTRACT

Expression of glycosylation-related genes (or glycogenes) is strictly regulated by transcription factors and epigenetic processes, both in normal and in pathological conditions. In fact, glycosylation is an essential mechanism through which proteins and lipids are modified to perform a variety of biological events, to adapt to environment, and to interact with microorganisms.Many glycogenes with a role in normal development are epigenetically regulated. Essential studies were performed in the brain, where expression of glycogenes like MGAT5B, B4GALNT1, and ST8Sia1 are under the control of histone modifications, and in the immune system, where expression of FUT7 is regulated by both DNA methylation and histone modifications. At present, epigenetic regulation of glycosylation is still poorly described under physiological conditions, since the majority of the studies were focused on cancer. In fact, virtually all types of cancers display aberrant glycosylation, because of both genetic and epigenetic modifications on glycogenes. This is also true for many other diseases, such as inflammatory bowel disease, diabetes, systemic lupus erythematosus, IgA nephropathy, multiple sclerosis, and cardiovascular diseases.A deeper knowledge in epigenetic regulation of glycogenes is essential, since research in this field could be helpful in finding novel and personalized therapeutics.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Glycosylation , Histone Code , Protein Processing, Post-Translational
6.
Int J Mol Sci ; 22(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208778

ABSTRACT

Parkinson's disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid-protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.


Subject(s)
Ceramides/biosynthesis , Parkinson Disease/etiology , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Animals , Biosynthetic Pathways/drug effects , Cell Line, Tumor , Disease Management , Disease Susceptibility , Fatty Acids, Monounsaturated/metabolism , Humans , Intracellular Space/metabolism , Oxidative Stress , Parkinson Disease/drug therapy , Sphingolipids/metabolism
7.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804149

ABSTRACT

In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.


Subject(s)
Epigenesis, Genetic/genetics , Neoplasms/genetics , Protein Processing, Post-Translational/genetics , RNA, Untranslated/genetics , Acetylation , DNA Methylation/genetics , Glycosylation , Humans , Immunoglobulin A/genetics , Neoplasms/metabolism , Polysaccharides/genetics
8.
Cancers (Basel) ; 12(6)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32527016

ABSTRACT

Carbohydrate antigen 19.9 (CA19.9) is used as a tumor marker for clinical and research purposes assuming that it is abundantly produced by gastrointestinal cancer cells due to a cancer-associated aberrant glycosylation favoring its synthesis. Recent data has instead suggested a different picture, where immunodetection on tissue sections matches biochemical and molecular data. In addition to CA19.9, structurally related carbohydrate antigens Lewis a and Lewis b are, in fact, undetectable in colon cancer, due to the down-regulation of a galactosyltransferase necessary for their synthesis. In the pancreas, no differential expression of CA19.9 or cognate glycosyltransferases occurs in cancer. Ductal cells only express such Lewis antigens in a pattern affected by the relative levels of each glycosyltransferase, which are genetically and epigenetically determined. The elevation of circulating antigens seems to depend on the obstruction of neoplastic ducts and loss of polarity occurring in malignant ductal cells. Circulating Lewis a and Lewis b are indeed promising candidates for monitoring pancreatic cancer patients that are negative for CA19.9, but not for improving the low diagnostic performance of such an antigen. Insufficient biological data are available for gastric and bile duct cancer. Studying each patient in a personalized manner determining all Lewis antigens in the surgical specimens and in the blood, together with the status of the tissue-specific glycosylation machinery, promises fruitful advances in translational research and clinical practice.

9.
Mol Neurobiol ; 57(7): 2934-2943, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32430844

ABSTRACT

Neuronal homeostasis depends on both simple and complex sugars (the glycoconjugates), and derangement of their metabolism is liable to impair neural function and lead to neurodegeneration. Glucose levels boost glycation phenomena, a wide series of non-enzymatic reactions that give rise to various intermediates and end-products that are potentially dangerous in neurons. Glycoconjugates, including glycoproteins, glycolipids, and glycosaminoglycans, contribute to the constitution of the unique features of neuron membranes and extracellular matrix in the nervous system. Glycosylation defects are indeed frequently associated with nervous system disturbances and neurodegeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms associated with the loss of dopaminergic neurons in the pars compacta of the substantia nigra. Neurons present intracytoplasmic inclusions of α-synuclein aggregates involved in the disease pathogenesis together with the impairment of the autophagy-lysosome function, oxidative stress, and defective traffic and turnover of membrane components. In the present review, we selected relevant recent contributions concerning the direct involvement of glycation and glycosylation in α-synuclein stability, impaired autophagy and lysosomal function in PD, focusing on potential models of PD pathogenesis provided by genetic variants of glycosphingolipid processing enzymes, especially glucocerebrosidase (GBA). Moreover, we collected data aimed at defining the glycomic profile of PD patients as a tool to help in diagnosis and patient subtyping, as well as those pointing to sugar-related compounds with potential therapeutic applications in PD.


Subject(s)
Dopaminergic Neurons/metabolism , Glucose/metabolism , Glycoconjugates/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Animals , Autophagy/physiology , Humans , Inclusion Bodies/metabolism , Oxidative Stress/physiology , Parkinsonian Disorders/metabolism
10.
Glycobiology ; 30(2): 95-104, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31584066

ABSTRACT

Three missense variants of ST3GAL3 are known to be responsible for a congenital disorder of glycosylation determining a neurodevelopmental disorder (intellectual disability/epileptic encephalopathy). Here we report a novel nonsense variant, p.Y220*, in two dichorionic infant twins presenting a picture of epileptic encephalopathy with impaired neuromotor development. Upon expression in HEK-293T cells, the variant appears totally devoid of enzymatic activity in vitro, apparently accumulated with respect to the wild-type or the missense variants, as detected by western blot, and in large part properly localized in the Golgi apparatus, as assessed by confocal microscopy. Both patients were found to efficiently express the CA19.9 antigen in the serum despite the total loss of ST3GAL3 activity, which thus appears replaceable from other ST3GALs in the synthesis of the sialyl-Lewis a epitope. Kinetic studies of ST3GAL3 revealed a strong preference for lactotetraosylceramide as acceptor and gangliotetraosylceramide was also efficiently utilized in vitro. Moreover, the p.A13D missense variant, the one maintaining residual sialyltransferase activity, was found to have much lower affinity for all suitable substrates than the wild-type enzyme with an overall catalytic efficiency almost negligible. Altogether the present data suggest that the apparent redundancy of ST3GALs deduced from knock-out mouse models only partially exists in humans. In fact, our patients lacking ST3GAL3 activity synthesize the CA19.9 epitope sialyl-Lewis a, but not all glycans necessary for fine brain functions, where the role of minor gangliosides deserves further attention.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate , Carbohydrate Metabolism, Inborn Errors , Epilepsy , Gene Expression Regulation , Mutation, Missense , Sialyltransferases , Twins, Dizygotic , Antigens, Tumor-Associated, Carbohydrate/biosynthesis , Antigens, Tumor-Associated, Carbohydrate/genetics , Carbohydrate Metabolism, Inborn Errors/genetics , Carbohydrate Metabolism, Inborn Errors/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Female , Humans , Infant , Male , Sialyltransferases/genetics , Sialyltransferases/metabolism
11.
Int J Mol Sci ; 20(13)2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31284408

ABSTRACT

Sphingolipid metabolism starts with the biosynthesis of ceramide, a bioactive lipid and the backbone for the biosynthesis of complex sphingolipids such as sphingomyelin and glycosphingolipids. These are degraded back to ceramide and then to sphingosine, which enters the ceramide-sphingosine-1-phosphate signaling pathway or is further degraded. Several enzymes with multiple catalytic properties and subcellular localizations are thus involved in such metabolism. Hereditary defects of lysosomal hydrolases have been known for several years to be the cause of lysosomal storage diseases such as gangliosidoses, Gaucher disease, Niemann-Pick disease, Krabbe disease, Fabry disease, and Farber disease. More recently, many other inborn errors of sphingolipid metabolism have been recognized, involving enzymes responsible for the biosynthesis of ceramide, sphingomyelin, and glycosphingolipids. Concurrently, epidemiologic and biochemical evidence has established a link between Gaucher disease and Parkinson's disease, showing that glucocerebrosidase variants predispose individuals to α-synuclein accumulation and neurodegeneration even in the heterozygous status. This appears to be due not only to lysosomal overload of non-degraded glucosylceramide, but to the derangement of vesicle traffic and autophagy, including mitochondrial autophagy, triggered by both sphingolipid intermediates and misfolded proteins. In this review, old and novel disorders of sphingolipid metabolism, in particular those of ganglioside biosynthesis, are evaluated in light of recent investigations of the link between Gaucher disease and Parkinson's disease, with the aim of better understanding their pathogenic mechanisms and addressing new potential therapeutic strategies.


Subject(s)
Gaucher Disease/metabolism , Parkinson Disease/metabolism , Sphingolipids/metabolism , Animals , Biosynthetic Pathways , Enzymes/metabolism , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Sphingolipids/biosynthesis , Sphingolipids/chemistry
12.
Glycobiology ; 29(3): 229-241, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30576498

ABSTRACT

ST3GAL5-CDG is a rare syndrome which is caused by variant GM3 synthases, the enzyme involved in the biosynthesis of a-b-c-series gangliosides. Here we report a novel homozygous ST3GAL5 variant, p.Gly342Ser, in a patient suffering from failure to thrive, severe hearing, visual, motor, and cognitive impairment, and respiratory chain dysfunction. A GM3 synthase assay towards the natural acceptor substrate lactosylceramide was performed upon transfection in HEK-293T cells of expression plasmids carrying wild type and mutated ST3GAL5 cDNAs. The assay revealed a complete loss of enzyme activity. Identical results were obtained with the other four ST3GAL5 variants which have been reported to be pathogenic. HEK-293T clones permanently expressing HaloTag-ST3GAL5 carrying each of the five variants were assessed by quantitative PCR, flow cytometry, western blotting and confocal microscopy. The results indicated that transcription, translation, stability and intracellular localization of the tagged protein were identical to those of the wild type construct. Compared with the very mild phenotype of st3gal5 KO mouse models, the results suggest that unknown mechanisms, in addition to the lack of a-b-c-series gangliosides, contribute to the syndrome. Direct enzyme assay upon transfection in model cells appears to be an effective tool for characterizing variants of glycosyltransferases involved in glycosphingolipid biosynthesis.


Subject(s)
Congenital Disorders of Glycosylation/genetics , G(M3) Ganglioside/metabolism , Gangliosides/genetics , Sialyltransferases/genetics , Animals , Cells, Cultured , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/pathology , Flow Cytometry , G(M3) Ganglioside/genetics , Glycosylation , HEK293 Cells , Homozygote , Humans , Mice , Mice, Knockout , Mutation , Phenotype , Plasmids
13.
Mol Genet Metab ; 124(4): 230-237, 2018 08.
Article in English | MEDLINE | ID: mdl-29983310

ABSTRACT

Among the numerous congenital disorders of glycosylation concerning glycoproteins, only a single mutation in ganglioside biosynthesis had been reported until a few years ago: one in the ST3GAL5 gene, encoding GM3 synthase. More recently, additional mutations in the same gene were reported, together with several distinct mutations in the B4GALNT1 gene, encoding GM2/GD2/GA2 synthase. Patients suffering from ST3GAL5 deficiency present a devastating syndrome characterized by early onset and dramatic neurological and cognitive impairment, sometimes associated with dyspigmentation and an increased blood lactate concentration. On the other hand, B4GALNT1 mutations give rise to a form of complicated hereditary spastic paraplegia (HSP), previously referred to as HSP26. It is characterized by the late onset of lower limb weakness and mild to moderate intellectual impairment, which is usually not progressive. In addition to the most typical signs, some patients present ocular and endocrine signs, pes cavus, and psychiatric illness. Since the nineties, mice lacking genes for single glycosyltransferases involved in ganglioside biosynthesis, including ST3GAL5 and B4GALNT1, were created and studied. The resulting phenotypes were frequently mild or very mild, so double knock-out animals were created to effectively study the function of gangliosides. The main clinical and biochemical features of patients suffering from GM3 synthase or GM2/GD2/GA2 synthase deficiency, compared with the phenotypes described in mice that are null for single or multiple glycosyltransferase genes, provide suggestions to improve the recognition of novel mutations and potentially related disorders.


Subject(s)
Congenital Disorders of Glycosylation/genetics , N-Acetylgalactosaminyltransferases/genetics , Sialyltransferases/genetics , Spastic Paraplegia, Hereditary/genetics , Animals , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/pathology , Gangliosides/biosynthesis , Gangliosides/genetics , Glycoproteins/genetics , Glycosylation , Humans , Mice , Mice, Knockout , Mutation , Spastic Paraplegia, Hereditary/metabolism , Spastic Paraplegia, Hereditary/pathology
14.
Int J Mol Sci ; 18(5)2017 May 06.
Article in English | MEDLINE | ID: mdl-28481247

ABSTRACT

In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as "glycogenes". The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.


Subject(s)
Acetylglucosamine/metabolism , Epigenesis, Genetic , Neoplasms/genetics , Protein Processing, Post-Translational , Animals , Galectins/metabolism , Glycosylation , Histones/metabolism , Humans , Neoplasms/metabolism
15.
Naunyn Schmiedebergs Arch Pharmacol ; 390(8): 775-790, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28439630

ABSTRACT

Our aim was to use quantitative and qualitative analyses to gain further insight into the role of ceramide in cystic fibrosis (CF). Sphingolipid ceramide is a known inflammatory mediator, and its accumulation in inflamed lung has been reported in different types of emphysema, chronic obstructive pulmonary disease and CF. CF is caused by a mutation of the chloride channel and associated with hyperinflammation of the respiratory airways and high susceptibility to ongoing infections. We have previously demonstrated that de novo ceramide synthesis is enhanced in lung inflammation and sustains Pseudomonas aeruginosa pulmonary infection in a CF murine model. We used liquid chromatography and matrix-assisted laser desorption/ionization (MALDI) imaging coupled with mass spectrometry, confocal laser scan microscopy and histology analyses to reveal otherwise undecipherable information. We demonstrated that (i) upregulated ceramide synthesis in the alveoli is strictly related to alveolar infection and inflammation, (ii) alveolar ceramide (C16) can be specifically targeted by nanocarrier delivery of the ceramide synthesis inhibitor myriocin (Myr) and (iii) Myr is able to downmodulate pro-inflammatory lyso-PC, favouring an increase in anti-inflammatory PCs. We concluded that Myr modulates alveolar lipids milieu, reducing hyperinflammation and favouring anti-microbial effective response in CF mouse model.


Subject(s)
Ceramides/metabolism , Cystic Fibrosis/metabolism , Fatty Acids, Monounsaturated/pharmacology , Lung/drug effects , Pseudomonas Infections/metabolism , Respiratory Tract Infections/metabolism , Animals , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Fatty Acids, Monounsaturated/administration & dosage , Female , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Lung/metabolism , Lung/pathology , Male , Mice, Knockout , Nanoparticles/administration & dosage , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/isolation & purification , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/pathology
16.
Biology (Basel) ; 6(1)2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28241499

ABSTRACT

The tetrasaccharide structures Siaα2,3Galß1,3(Fucα1,4)GlcNAc and Siaα2,3Galß1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLea and the possible use of circulating sLex in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions.

17.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3210-3220, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27535614

ABSTRACT

BACKGROUND: CA19.9 antigen has been assumed as an abundant product of cancer cells, due to the reactivity found by immunohistochemical staining of cancer tissues with anti-CA19.9 antibody. METHODS: Expression and biosynthesis of type 1 chain Lewis antigens in the colon and the pancreas were studied by immunodetection in tissue sections and lysates, quantification of glycosyltransferase transcripts, bisulfite sequencing, and chromatin immunoprecipitation assays. RESULTS: CA19.9 was poorly detectable in normal colon mucosa and almost undetectable in colon cancer, while it was easily detected in the pancreatic ducts, together with Lewis b antigen, under both normal and cancer conditions. B3GALT5 transcripts were down-regulated in colon cancer, while they remained expressed in pancreatic cancer. Even ST3GAL3 transcript appeared well expressed in the pancreas but poorly in the colon, irrespective of normal or cancer conditions. CpG islands flanking B3GALT5 native promoter presented an extremely low degree of methylation in pancreatic cancer with respect to colon cancer. In a DNA region about 1kb away from the B3GALT5 retroviral promoter, a stretch of CG dinucleotides presented a methylation pattern potentially associated with transcription. Such a DNA region and the transcription factor binding site provided overlapping results by chromatin immunoprecipitation assays, corroborating the hypothesis. CONCLUSIONS: CA19.9 appears as a physiological product whose synthesis strongly depends on the tissue specific and epigenetically-regulated expression of B3GALT5 and ST3GAL3. GENERAL SIGNIFICANCE: CA19.9 and other Lewis antigens acquire tumor marker properties in the pancreas due to mechanisms giving rise to reabsorption into vessels and elevation in circulating levels.


Subject(s)
Antigens, Neoplasm/metabolism , CA-19-9 Antigen/metabolism , Colonic Neoplasms/metabolism , Galactosyltransferases/metabolism , Glycosyltransferases/metabolism , Lewis Blood Group Antigens/metabolism , Pancreatic Neoplasms/metabolism , Sialyltransferases/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Colon/metabolism , Colon/pathology , Colonic Neoplasms/pathology , CpG Islands/genetics , DNA/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Fluorescent Antibody Technique , Gene Expression Regulation, Enzymologic , Humans , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/pathology , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , beta-Galactoside alpha-2,3-Sialyltransferase
19.
Biology (Basel) ; 3(3): 484-97, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25256425

ABSTRACT

Glycosylation is a metabolic pathway consisting of the enzymatic modification of proteins and lipids through the stepwise addition of sugars that gives rise to glycoconjugates. To determine the full complement of glycoconjugates that cells produce (the glycome), a variety of genes are involved, many of which are regulated by DNA methylation. The aim of the present review is to briefly describe some relevant examples of glycosylation-related genes whose DNA methylation has been implicated in their regulation and to focus on the intriguing case of a glycosyltransferase gene (B3GALT5). Aberrant promoter methylation is frequently at the basis of their modulation in cancer, but in the case of B3GALT5, at least two promoters are involved in regulation, and a complex interplay is reported to occur between transcription factors, chromatin remodelling and DNA methylation of typical CpG islands or even of other CpG dinucleotides. Transcription of the B3GALT5 gene underwent a particular evolutionary fate, so that promoter hypermethylation, acting on one transcript, and hypomethylation of other sequences, acting on the other, cooperate on one gene to obtain full cancer-associated silencing. The findings may also help in unravelling the complex origin of serum CA19.9 antigen circulating in some patients.

20.
Biochim Biophys Acta ; 1840(9): 2752-64, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24949982

ABSTRACT

BACKGROUND: Glycosylation is increasingly recognized as one of the most relevant postranslational modifications. Sialic acids are negatively charged sugars which frequently terminate the carbohydrate chains of glycoproteins and glycolipids. The addition of sialic acids is mediated by sialyltransferases, a family of glycosyltransferases with a crucial role in cancer progression. SCOPE OF THE REVIEW: To describe the phenotypic and clinical implications of altered expression of sialyltransferases and of their cognate sialylated structures in cancer. To propose a unifying model of the role of sialyltransferases and sialylated structures on cancer progression. MAJOR CONCLUSIONS: We first discuss the biosynthesis and the role played by the major cancer-associated sialylated structures, including Thomsen-Friedenreich-associated antigens, sialyl Lewis antigens, α2,6-sialylated lactosamine, polysialic acid and gangliosides. Then, we show that altered sialyltransferase expression in cancer, consequence of genetic and epigenetic alterations, generates a flow of information toward the membrane through the biosynthesis of aberrantly sialylated molecules (inside-out signaling). In turn, the presence of aberrantly sialylated structures on cell membrane receptors generates a flow of information toward the nucleus, which can exacerbate the neoplastic phenotype (outside-in signaling). We provide examples of self-fueling loops generated by these flows of information. GENERAL SIGNIFICANCE: Sialyltransferases have a wide impact on the biology of cancer and can be the target of innovative therapies. Our unified view provides a conceptual framework to understand the impact of altered glycosylation in cancer.


Subject(s)
Neoplasm Proteins/metabolism , Neoplasms/enzymology , Sialyltransferases/metabolism , Signal Transduction , Animals , Disease Progression , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Sialyltransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...